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ABSTRACT

These technical memoranda (ARL-TM-73-11 and ARL-TM-7-_12)
describe two analyses of ACODAC data tapes. The first
memorandum contains the initial or preliminary analysis of
an ACODAC performed at ARL. Data generated by four types of
sources--ambient noise, cw source, vibroseis source, and
shot (explosive) source--were analyzed. The second memorandum
describes the analysis performed and results obtained at
ARL in support of the Test Director for the Blake Test to
evaluate ACODAC system self-noise effects on system per-
formance.
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I. AM PEMflNRY DATA ANALYSIS FROM ACODAC SYSTEM

A. Introduction

The duplicate data tape from the ACODAC System used during the

Church Gabbro Exercise was received at Applied Research Laboratories

(ARL), The University of Texas at Austin, early on 11 June 1973. A

prelimt'ary analysis was conducted to demonstrate 1BL's capabilities to

handle data analysis of this type. The analysis was constrained by

limited time, inability to read time code information and amplifier gain

changes, and no log or.record of the content of the data tape.

After examining the tape, the decision was made to isolate and

analyze four different data sepents containing ambient noise, continuous

wave (cw) sources, shots, and the vibroseis source. Time permitted only

the analysis of data from hydrophone number3.

B. PW A~ck SZ=tem and Procedues

rigurea I and 2 are bl.ock dimer= of the ARL computer and data.

.eductica Itzility.

bS•Lnce no I av prcvided with ;he dAta tape, it wa necesoary to

searth the tU!p to locate fou different types of data for wmlyaia.

The analog dUta wAs played back at. a espedup of 80:1 to locate different

Uits aegsents for *,alyzis. Sim•itameows visual observutions of the

output of hygrophones 2 4d 3, vith an audio presentation of the out-

put of h omphn o, enmblei the operator to !.ocate the dat. sepment.
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A Spectral Dynamics analyzer (500 line) was then used to examine the

spectral characteristics of these data segments to identify ambient

noise, cw sources, shots, and v"broseis source.

These data segments were passed thirough a 10 to 300 Hz (real time)

filter to prevent aliasing and to eliminate extraneous low frequency

playback system noise outside the frequency band of interest. The data

were digitized at a 600 Hz (real time) rate in 8192 sample blocks and

stored on digital tape. The 600 Hz sync signal for the A/D converter

was obtained from the 12th harmonic of the 50 Hz carrier on the time

code channel, thus eliminating wow and flutter induced by the recording/

playback processes.

Additional data were processed via the Spectral Dynamics analyzer.

The spectral lines computed by the analyzer were output to the digital

computer and stored on digital tape.

The location in time, relative to the start of the data taoe, of

the data segments analyzed are approximate since no tape log was avail-

able. The estimated times were taken from the reel turr count of the

playback recorder, which is not a linear system.

C . Ambient Noise

Figures 3, 4, and 5 are relative power spectra of three consecutive

&eaments of ambient noise data with no amplifier gain changes observed

visually. These data segments occurred toward the end of the first

recording day. The data were digitized using the phase locked 600 Hz

S•ignal., spectra were computed with m. F1T nIsing a Hanning window, and

the spectra were averaged to produce stable spectral estimates. Each

upcctrum covers a data block of 13.7 sec (819'e samples). The frequency

resolution is 0.07 HIz. Each graph represents an average of 50 consecu-

tive suectra or a real time interval of 11.4 min. The general spectra
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shape remains consistent throughout the analysis sequence. The spectral

lines between 25 and 75 Hz indicate the presence of a ship in the area.

Figure 3, the beginning of the analysis sequence, shows a spectral

increase of approximately 4 dB in the frequency range of 100 to 125 Hz.

Figure 6 is a time varying power spectra of a differvnt data

segment of ambient noise occurring near the end of the first recordng

day. The relative power spectra were computed by the Spectral Dynamics

analyzer with a resolution of 0.75 Hz. The display shows the frequency

markers from the analyzer for reference, the frequency spectra computed

for the calibration signal recorded on the 'CODAC tape, and the spectra

of the ambient noise. Each time trace represents an average of four

power spectra corputed with a 2 sec data block. The lack of low frequency

lines indicates no shipping present.

ID. Calibration

Figure 7 is a spectral analysis of one of the calibration sij4pifl
occurring every 6 i on the ACODAC recording systeom. This data sco t

occurred approximately 1 1/3 days into the recording. The 4atti wer

digitized at a 600 Ift rate in 8192 saa)pls.osequence for IS se'%uencc ý'

in data blocks or 13.7 sec. Tht 1treqw'cy resolution it -. 07 1-. Thu

total length of the dta sequences is 4.2 min. A zpeetrW- is c-npute4

for each sequence ad the soquticS(8 r avraseA cuheccsl

ectimnte. The caltbnatton signal appeared to be porfoninc t r~~

function.

Figret it, a 4iiap1ay of the theto varying relsative linpt'kr poumer

spctra 01' a seque nce of vibroicia data r-curringr avproxiatcnteY 7-?%s

from start of recorditk. The relative pwar .spectn- wervo rct4nAte4 txs-U4

a Spectral Dynsaics real tiUme ualyer that produces 5LV crtra1 lior,

with 0.75 Ift resolution. Each cpectrt• is coouted for a sec deat.a

S
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block. The analyzer is set to average four consecutive spectra,

representing the analysis of 8 sec of data, and output to the digital

computer. These spectra were again averaged to represent power spectra

for 40 sec data blocks. The display is linear power versus frequency

versus relative time. Frequency markers from the analyzer are displayed

for reference. Figure 9 is a similar display, but with log power.

F. cw Sources

A data segment, containing an apparent cw source of 90 Hz, was

analyzed. The data segment occurred 2 1/2 days into the recording period.

Two different types of analysis were performed: high resolution spectral

analysis and adaptive spectral estimatioa to determine the spectral

content of the data segment.

1. Spectral Analysis

High resolution power spectra of a cw source in the ambient

noise background is shown in Fig. 10. The spectra are computed with an

MFT algorithm and averaged in blocks of 50 (11.4 min). The frequency

resolution is 0.07 Hz.

Spectral lines between 10 and 75 Hz indicate the presence of

shipping. The line at 90.7 Hz is assumed to be the cw source. The

side lobe structure of the -spectral line indicates an amplitude modulation.

Three consecutive sets of data were analyzed in the same

manner to obser^e if the lines tere present over a longer time interval.

Fiures 11, 12, and 13 show how the lines vary over a 33 min data block.

Time varying pa-er spectra of the ambient noise plus cv giglal

"are shown in Fig. 14. Sm spectra are computed via an vFT using a

12
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Gaussian window with 30 equivalent degrees of freedom. No ensemble

averaging is used. The basic frequencl resolution is 0.29 Hz. Each

line is an FFT on the first 2048 points from every 3rd sequence on

digital tape 1604. The cw tone at 90.7 Hz is evident and it is changing

in amplitude with time.

2. Adaptive Spectra Estimation

Figure 10 shows definite spectral lines. In an effort to

check on the stability of these lines, a modification of the maximum

entropy method (MEM) of computing spectra was used on the first 41

records of digital tape 1604. The basic program forms an autocovariance

matrix, inverts it, and solves for the roots of a polynomial, which

indicate resonance frequencies in the data. The primary advantage of

the method is that it allows the use of a small amount of data to obtain

a high resolution spectriun or the resonance frequencies in the case of

this modified version. The amplitude of spectral lines is ignored by

the program, but they may be found later.

Figure 15 shows the results of a time versus frequency display.

The program is conmanded to search for 14 roots; and up to 14 asterisks,
which represent the frequencies found at that time, are displayed on each

lina. The 90 Hz line is strong and consistent; the other lines appear

to fade in and out. The method is dependent upon signal-to-noise ratio

(S/N), and as the signal fades the lines will appear to shift frequency.

The conclusion is that the lines are present on the average, a81i they

fade in and out in magnitude.

a G. Validation of Data

A useful measure of the changing statistics of noise data is to

test for homogeneity. That is, if two data sets have the same proba-

bility density, then they are homogeneous. In this case, a long digital

19
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P tape subdivided into records of 8192 samples each was examined. This

data segment occurred 2 1/2 days into the tape and contains ambient noise

plus a cw signal. The 10th record was chosen as a reference and was

compared to each of the other 138 records. One hundred samples were

obtained from each record by picking every 10th sample from the first

1000 samples. The Kolmogorov-Smirnov (K-S) statistic was computed for

each comparison and the result is shown in Fig. 16. The conclusion is

that after a 2 h span of time the statistics change sufficiently for

the K-S test to consistently reject the hypothesis that the data are

homogeneous. After 4 h the data are again homogeneous with respect

to the 10th record. This test should be repeated using different records

*• as references for a complete analysis.

This brief analysis shows that for this environmental situation it

would not be appropriate to average for more than a 2 h span of time

to obtain a statistically reliable estimate of power spectra.

H. Digitization and Analysis of Shot Data

To obtain a suitable data base that would facilitate a preliminary

investigation of the shot signals, a total of 36 waveforms from explosive

sources were digitized. These data were approximately 5 1/2 days into the

tape and were generated with a "2-shot" explosion seqtence. Each

received signal, from hydrophone 3, was gated in time by choosing an

appropriate time delay following the fir-st shot in each pair. The sample

rate was the phase locked 600 Hz. Figure 17 shows computer plots of the

first five echoes of the 36-echo sequence. The location of the shot

signals are evident although only every 30th sample is plotted here. The

reason for choosing a 40 sec window to select the data was to overcome

instability of the triggering method. More detailed plots of the data

are shown in Fig. 18. Here every 5th sample has been plotted.

21
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A general structur.ý of the sbot data is shown in Fig. 19 where three
consecutive signals from the begianing of the data set (of 36 shots) sand

two consecutive signals from the end of the data set are plotted. The

first three signala are similar in structure as are the last two signals.

However, a structural differencea, with respect to the number and arrival

times of multipath signals, doiss exist between the set of the three

earlier shots and the set of two later shots. This is to be expected

since the geometry of the shot experiment changed over the duration of

the measurements, and accord:ng]ly, the multipath structure would also change.

Within a few consecutive shots, however, the multipath structure appears

to be relatively stable.

Figure 20 provides a comparison for the waveforms of the primary

arrivals of two (No. 1 and 5) shot signals. The two waveforms are very

similar ir shape, particularly with respect to the location and amplitudes

of some of the larger peaks. Some differences between these two waveforms

can be discernea, and these could be attributed to either differences in

the generation of the shots or changes in the propagation environmrent.

To obtain a preliminary estimate of the required sample rate on the

shot data, stgnal eas plotted with .mrious sample rates. It 'was con-

cluded that at leas'; 6M H, is necessary and very likely sufficient for

the preservation of the informAtion in the signral waveform. Figure 21

"illustratea the effect of reducing the taeple rate on a týical signal.

Misleading resulta will be obtained with a 300 |tz sample rate since much

of the waveform ntructure is lost when the auzple rate is changd from

600 lIt to 30) Itz .

Usin•1 gi. 22 one can compare the uhot-to-ahot consistency of the

second arrivals. The consittency here does not appear to be as high as

that of the primary arrival (see Fig. 20). Also, the second arrivalU

are more spread in tiwe, which indicates that this particular multipath

component introduceý a time smear into the acoustic propagation.

25
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I. Intensity Spectrum of Shot Data

A very limited attempt was made to estimate the intensity spectrum

of the received shot data. A sample spectrum (2.34 Hz resolution) of

the first arrival of the fourth shot is showm in Fig. 23. Generally,

the spectrum decays frcm its maximum near zero frequency to a minimum

at 3W00 Hz, the extent of the receiver filters. This estimate has many

fluctuations present, some of which are undoubtedly due to statistical

inaccuracies in the estimate. Tire permitting, the estimate would be

improved by several techniques such as averaging several spectra or using

appropriate smoothing functions.

Before proceeding with the computation of the spectra, however, the

shot data should be more accurately described with respect to its

deterministic or random structure. If the shot data were entirely detenni-

riRtic and repeated consistently over the duration of the experiment, then

all of the spectral information could, in principle, be obtained from one

samp'e function. However, the shot data do appear to have random com-

ponents -,nd parti-ularly so in the 2nd, 3rd, 4th, etc., arrivals. When

this is the &ase then appropriate ensemble techniques must be employed

to obtain a statistically reasonable estimate of the intensity spectra of

the data. This t.chnique should be used carefully, however, ;since the

"time" spectrum of the shot data may change during the coursc of &n

experiment due to a change in the experimental geometry and propaiotion

conditions, in this cse, &!, enseA1%wle spectra could be mis-leadrng aince

it would be derived from data that were essentially inhomogeneouz. Thii

problem ca.n only be solved alter a preliminary investigation of the •ta-

tistical properties of the received shut dta.

J. Estimation of si&gnal-to-INoise Ratio

One of the more important quantities i1 the SiN of kn)- rvon aet "

shot date. In this analysisa the S/ri of a typica: sivAl WaV Vtizte'd

30
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according to two definitions of S/N and several averaging times used in

the estimation of the noise background. The problem is illustrated in

Fig 24 Inthi cae te sgna isreltivly asyto locate, a situa-

tionthat Likely will not alway occur. The epoch of the sinli

notd a wll s patiula wido usd or heestimate oftenoise

powe orintmity Th tw SI's etimtedarecom~puted using the peak

of the signal and the average energy of the signal. (see Fig. 25). The

stability of the estimate should improve as the averaging time of the

noise estimate improves. This is ill.ustrated very clearly in Fig. 25

where it can be seen that the ;SIN estimate approaches a stable value wihen

an averaging time of 0.5 sac or greater is uzsed. To determine useful

SIN values, analysis of the effect. of averaging time should be performed to

obtain higber confidence in the results as well as a cavings in protessing

time.
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II! ANALYSIS OF THE BLAKE TEST ACODAC DATA

(ARL-TM-73-l2)

A. Blake Test Analysis

1. Introduction

The Blake Test was conducted at sea in a deep water environment

for the purpose of evaluating the ACODAC system self-noise effects on

system performance. Data tapes from the Woods Hole Oceanographic Institute

(WHOI) and the University of Miami. (UM) ACODAC systems were duplicated

and furnished to ARL for analysis in support of the Test Director (UM).

The UM array parted early into the test leaving only hydrophone channel 6

recording data.

2. Data Reduction Procedures

Data reduction was accomiplished using the hardware/software

systems currently in operation at ARL. These systems are dascribed in

Section I (ARL-TH-73-l]). The variances on these basic procedures are

outlined in this report with the description of each type of analysis

performed.

53. Anals is Constraints

The data analysis was somewhat constrained by the nature of the

"test, which included a tight time schedule for the completion of the

analysis. The data tapes were received at ARL on 20 June 1973 and the

results were presented at a meeting with th. Test Director at WHOI on
25 June 1973.

1



Other constraints that slowed the analysis were the lack of a

time code reader and test event log. The ACODAC tapes were edited and

consistent events were located on each tape. For reference in coordinating

this analysis with other analyses, the time code was digitized by

quadrature sampling and decoded with the digital computer. The ACODAC

amplifier gains were read with the same procedure.

+. Data Tape Quality

The duplicate ACODAC analog tapes were examined for "quality"

prior to the analysis. The signal levels on the Blake Test tapes were

compared to the Church Gabbro tape previously analyzed (Section I).

Table I gives the signal level on the tape, using identical playback

electronics, for the Church Gabbro, Blake WHOI, and Blake UvM tapes. The

peak calibration signals for the Blake Test tapes were 10 to 20 dB below

comparable signal levels on the Church Gabbro tape. The APL playback

system noise, using blank tape in the recorder, is also given in Table I.

TABLE I

SIGNAL LEVEL CHECK FOR
THE ACODAC TAPES

Signal Levels (dB re I Vrms)

Playback*
Hydrophone system Church WHOI UM
Channel noise Gabbro -(Blake) Blake

1 -49 -11 -21 -

2 -45 -9 -21 -

3 -49 -11 -33 -

4 -47 -10 -27 -

5 -47 -15 -43 -

6 -47 -9 -29 -43

*Playback system noise was determined by using blank tape.

36<
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B. ACODAC Calibration Analysis

1. Purpose

The analysis time period for the Blake Test data did not permit

an extensive study of the stability of the ACODAC system calibration. To

establish a "quality check" on the data for each hydrophone to be analyzed,

the calibration signal recorded immediately prior to the ambient noise

data was examined. This calibration occurred between the 50 and 100 mile

shot sequences.

j2. Data Reduction Procedures

The time compressed (40:1) analog data was bandpass filtered

(10 to 300 Hz) and digitized. The A/D converter was synced to the 12th

harmonic (600 Hz) of the 50 Hz carrier of the time code to reduce tape

recorder inaccuracies. The spectra were computed with a FFT algorithm to

a resolution of 0.OT3 Hz. The data block for the FIT is 13.65 sec. A

Hanning window was applied to each spectrum for smoothing. The spectra

shown in Figs. I through 7 represent an ensemble average of 2.3 min. The

spectra have been corrected for the playback amplifier gain but not for

the ACODAC amplifier gain. Table II is Ln explanation of the labels

for the spectra.

3. Spectral Analysi'

Table III is a summary of the peak and noise spectral levels

of the calibration signal for the WHOI and UM arrays. For the WHOI array,

Shydrophone channolz 1, 2, and 4 show a consistent peak signal-to-noise

Sratio (SIN) of at least 50 dB at 50 Hz. Hydrophone channels 3, 5. and

6 of the WHOI array indicate a lower dynamic range. For all hydrophone

channels the 200 Hz calibralion signal In approximately 10 dB lower than

the 50 H~z calibration signal. All of the channels contain harmonics of

the calibration signals of significant levels.

",- ,-••.
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TABLE II

CALIBRATION SPECTRA LABELS

LABELPL-ANALTION

SYSTS 5 WHOI Array
4 um Array

DAY
HOUR) Time Code

CHANEL Hytrophone number
(top hydrophone i )

AMPGAWN ACDA Apifier Gain as ece

S.ZALE Playback Ampit tier Gain

Sampling rate, li:
Frequmncy r2$oiution, lit

~flY~hSzwothing VwiQVo
-I - Iflnnin, vlctdtn
-D113 u113 cctf*~tilt-

IXKL' t~t hl'oek 1t th, Z4C



TABLE ilII

CALIBRATON SPECTRA LEVELS IS DEC IBEWL

liyd~phore WHOI Array

LU-M r_ Nois (Y0-3Qfl

2-38 *r7 -21 -18 ý *5 -22
2 -38 +17 -36 -18 -18 . -34-
3 -2*5 -15 -8 -21 -2 -30

4-39 +1:, -2.3 -23 -22 +3 -32
5 -A 2 -T -24 -39 -27 -i6 -31
6 -39 .1 -9 -32 -12 -9 -2.0

LI !M --

6 -4 c -7 '-25 - -~ -~ 3

46<-
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Hydrophone channel 6 of the UN array showed a peak F/N of

3 dB ac, 50Hz. The 200 Hz cal•eignJ. is • dB below the level of the

50 Hz cal signal.

The broadening of the cal spectral lines at 50 and 200 Hz may

have been caused by feed over of the calibration signal into the time

code track thereby causing the A/D sync signal to vary.

C. Ambient Noise Analsis

I.. Data Analyzed

The data chosen for the ambient noise analysis were recorded between

the 50 and 100 mile ahnt sequence. The decoded tim code read day 3,

hoUr 0, minutes 8 to 46 for the HI arrmy wd day 2, hour 0, minutes 9

to 46 for tbe ux array.

I 2. Data Reduction Pmcedures

J ~The analo data onthe ACO=lA Utaze were time coopresse4

."al ~ plaqtck, bwigaat filthred (10 to -VO Hz), =-Plifticd an
I dititized, The Aq9O converter uH Ss 11 Vite plus- ai~n ansi Was,

to tu 2th ivu,• ic (6•) pj of the 50 H: earrler of the tLe owe to

m•nI.4te recorr4pr uce errrs. The opectra vere •ccAut wih a

'M a1Gupriuth with 4. Moluon of -0.073 ie. ~h4t lc Ay

* re er.=be ergre4 for 11.4 4dn. ch zectrm is corrected for t e

*gi bu ne.e~ f ~ o~ r the XO au ta 17&l Vi. ~ 'it

Oa •--at•qo of the W1ze4 for the sectr-.

47--



"TABLE IV

1 CALIBRATION SPECTRA LABELS

LABEL ~ EXPLANATION

"SYSTEM 5 WHOI Array
4 UM Array

"DAY' HOUR? Time Code

CHANNEL Hydrophone number

(top hIydrophone = 1)

AMPGAIN ACODAC Amplifier Gain as Decoded

SCALE Playbaik Amplifier Gain

SAMPR Sarpling rate, Hz
FREQR Frequency resolution, Hz
SMOOTH Smoothing window

-1 =Hanning window
.3333 = 1/3 octave filter

BLKTIME Data block length, sec

, AVGTII4E Ensemble averaging time, min.

" 48<
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3. Spectra

Figures 8 through 15 give the ambient noise spectra for 11.4 min
of data as a function of depth. The spectral lines at frequencies less

than 50 Hz are assumed to be due to ship traffic. Table V gives the

relative spectral levels for the peak near 50 Hz and the system noise,

both record and playback, at 300 Hz. These spectral levels and the

differences between the 50 and 300 Hz levels indicate the errors resulting

from the improper operation of the different hydrophone channels of the

ACODAC systems and the analog tape duplication.

D. Strumming Analysis

"1 . Purose

The Blake Test was conducted to evaluate the self-noise or

strumming effects on the performance degradation of different hydrophone

array configurations. The WHOI array is the taut array type, and the UM

array is the compliant array type. The UM array parted very early in the

test; therefore the only data presented is for the WHOI or taut array

configuration. Spectra of ambient noise data for the frequency range of

0 to 6.25 Hz were used to illwitrate the effects of strutming. The data

segment was recorded beginning at time code day 3, hour 0, ianute 8.

2. Data Reduction Procedures

The analog ACODAC tape was time compressed (320:1) in playback,

bandpass filtered (i Hz to 100 Hz), and amplified. This analog signal

was input to a Spectral Dynamics SD301C Real Time Analyzer (RTA), which

output 500 spectral lines with a frequency resolution of 0.19 Hz into the

CDC 3200 digital computer. The ensemble averager of the RTA was used to

average the spectra for 64 sec. The reduction procedure consisted of

first digitizing the frequency markers from the RTA for reference, and

then digitizing the spectra of a data segment for each hydrophone channel.

15
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TABLE V

AMBIENT NOISE

RELATIVE SPECTRAL LEVELS IN DECIBELS

WHOI Array

Hydrophone Relative Spectral Levels Difference

Number 50 Hz 300 Hz (System noise) Between Levels

1 -16 -45 29

2 -7 -39 32
3 -29 -46 17

4 -31 -41 10

5 -40 -47 7

6 -4o -45 5

UNH Array

6 -39 -42 3

5-tit



The spectra are relative in magnitude on a channel-to-channel basis since

the ACODAC system gain corrections have not been applied. Playback system

noise spectra levels are shown for hydrophone channels 5 and 6.

3. Results

Figures 16 through 21 are time varying spectra of the ambient

noise field. These spectra illustrate the large levels below 6 to

25 Hz due to the strumning or self-noise of the array. The effects of the

large amplitude low frequency signals in depressing the gains of the

ACODAC amplifiers and reducing the dynamic range of the system are illus-

trated in the spectra. The effects of the struming vary from hydrophone
channel to hydrophone channel. The decoded ACODAC amplifier gains are

30, 19), 30, 20, 20, and 20 dB on hydrophone channels 1 through 6,

* respectively.

E. Shot Data Analysis

1. Introduction

Shots were dropped as sources at ranges of 10, 20, 50, an4 100 miles
from the two ACODACS. For each range. at leazt two zhots evch were used

at depths of 300 and 800 tt. The actuml shot pattern az dotermined from
* the ACODAC tapez is shown in Table VI.

TABX V"I - SUOT PATERNZ
l bwige rom. Nunbqr of Shots

Arr-ys, miles nt efeh Depth

10

203 3

502 2

100 ':k
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For digitizing, the analog ACODAC tape was passed through a

10 to 300 Hz bandpass filter. The sampling rate of 600 Hz was obtained

from the 12th harmonic of the 50 Hz carrier on the time code channel.

This phase locked sampling technique eliminated wow and flutter introduced

by the recording and playback processes. For each shot sequence of two

to four shots (at a given range), the digitizing process was started by

using the first shot in the sequence as a trigger. After the trigger,

20 consecutive blocks of 8192 samples (13.65 sec at the 600 Hz sampling

rate) were obtained for a total continuous digital record length of

273 sec. An exampla of one such sample sequence is shown in Figs. 22

and 23. These illustrate the signals from hydrophone I of the WHOI ACODAC

for shots at 300 ft and a 10 mile range. The illustrations are from hard

copies of an off-line CRT presentation of the digitized data. Four shots,

including the trigger shot, are clearly shown. Recording system gain

changes are obvious in the figures.

2. Multipath Structure of Signals

The second, third, and fourth shots, in Fis. 22 and 253, exhibit

multipath structure with at least three large atable multipath si~nalz

following the principal arrivul. In Fir. 24, an expanded presentation vf

the data for the second shot is ahtn. Also chown i1 the output of the

ssoe hydrophone for the WJO ft ahot at the 10ne 10 mile range. The

multipath -structure i4 similar for the two dipt•ts except that the th1ird

and fourth arrivI/s are earlier for thc WiO lt shot. These third and

fourth arrivals also appoar to consist of two de4structively intorfering

Ssig�y�~ for the 800 ft shot.

The principal arrival for the recond t hot in each sequence of

ahots was selected for Si analy-i,. The N was timted accor~ini. to

two definitiols oe s! (rif. 25). The two S/i ectimttec are vom.puted
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using the peak of the signal and the average energy of the signal.
Based on the previous ARL examination of the shot S/N (Section I), an
averaging time of 0.33 sec was used in estimating the average noise

intensity.

In Fig. 26, the amplitude versus time plot is shown for the
second shot of each sequence, received by hydrophone 1 of the WHOI
ACODAC. Also shown in Fig. 26 are the S/N's for each of the illustrated
shots. The temporal limits used in computing average signal energy are
"indicated in the illustration. This same set of information is given
for the signals from the remaining hydrophones in Appendix A.

The S/N results for all hydrophones are sumnarized in Table VII.
Some clearly discernible trends in these data are further illustrated in
Figs. 27 through 34.

In Fig. 27, the peak S/N is shown versus hydrophone numbLr
(WHOI ACODAC) for the 10 mile range shots. Subsequent figures show these
ratios for successively greater ranges: 20 miles (Fig. 28), 50 miles
(Fig. 29)) and 100 miles (Fig. 30). At the 10 and 20 mile ranges, the
near surface hydrophones exhibit the best values of S/N, with S/N
decreasing with increasing depth of the hydrophone. At the 50 mile range,
a greatly reduced S/N is evident in the data from hydrophone 3, with
values from the deep hydrophones almost equaling the two shallowest ones.
At the 100 mile range, hydrophones 2, 3, and 4 possess the higher SIN
values, with the ratio falling off both above and below these depths.

Clearly, the most consistently high S/N values are exhibited by hydro-
phone 2, though hydrophone 1 shows higher S/N for some rwiges and shot

depths.
4

These conclusions are further illustrated in Fig. 31, where SIN
values for hydrophones 1 and 2 are plotted versus range. The greatly
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TABLE VII

SIQGAL-TO-NOISE RATIOS: SHOT DATA

I•,drophone

Range/Depth of Charge Wi W2 W3 W4 KS W6 M6

10 miles, 300 ft 27.8 28.2 28.7 24.6 20.6 11.1 21.3
39.9 37.9 40.1 33.0 32.1 22.S 28.7

10 miles, 800 ft 23.5 21.S 20.7 17.9 20.3 12.8 14.4
32.3 33.0 33.0 27.2 31.S 2S.6 27.9

20 miles, 300 ft 25.4 20.2 27.7 23.9 22.0 14.0 7.11
39.2 32.9 38.1 37.0 31.9 23.9 19.2

20 idles. 800 ft 28.8 22.4 2S.2 23.7 16.0 14.8 19.3
40.1 33.3 3S.3 36.2 26.8 27.8 28.8

SO miles, 300 ft 19.8 19.8 8.84 1S.7 11.7 1o.S S.19
29.2 29.2 19.6 25.3 24.3 26.0 18.9

SO miles, 800 ft 27.7 21.1 S.16 19.1 21.6 I5.5 3.20
36.2 34.8 14.S 31.9 3S.2 27.6 13.9

1ro0 ales. 300 ft 12.5 24.9 24.3 24.6 No 7.0S 5.29
25.3 37.1 34.8 37.5 Signal 17.2 14.9

oo mles, 8ooF 19.9 22.4 24.4 23.9 16.8 10.8 0.45
32.1 34.9 37.S 3s.2 29.2 22.1 11.1

Energy S/N
Peak SIN



S/N - dB
Energy Peak

31-10-300
27.8 39.9

31-10-800

23.5 32.2

WI-20-300

3 25.4 39.2

WI-20-800
- 28.8 40.1

Wl-50-300
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W1-OO-800
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decreased S/N for hydrophones 3 and 4 is evident in Fig. 32, which shows

S/N versus range for these two hydrophones. The same information is shown

for hydrophones 5 and 6 in Fig. 33.

In Fig. 34, S/N values are compared for hydrophone 6 of both

the WHOI and UM ACODACs. Although comparable S/N was exhibited by the

two systems at the two shorter ranges, at the long ranges the S/N was

consistently higher at the WHOI ACODAC, especially for the deeper shots.

4. Spectrum

The intensity spectrum was estimated for the same shots used

in the S/N analysis (the second shot in each sequence). In Figs. 35

and 36, the spectra (2.34 Hz resolution) are shown for 300 ft and 800 ft

shots received by hydrophone 1 at the 10 mile range. The same information

is presented for other ranges and hydrophones in Appendix B. Though
there is considerable variation in the fine structure of these spectra,

they all agree in general form by having a low frequency maximum and a

general decay with increasing frequency to the bandpass filter limit of

300 Hz.

48
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APPENDIX A

Received Signal Amplitude Versus
Time and Signal-to-Noise Ratio

Label Example:

0 '300 ft shot depthWHOI 10

mile Range
Hydrophone

"-l~re u N | • im am ._.



I S/N- dB
W2-0-00Energy Peak

A -2.2 37.9

* ~W2-10-800

-I10 21.5 33.0

W2-20-300

120.2 32.9

* ~ W2-20-800

I ~YA22.4 33.3

j W2-SO-300

13 19.6 29.2

* If W2-5SO-800

211.1 34.8

* ~~W2-.100- 300  493.

W2-100-800

*22.4 34.9



113-10-300 __SIN -dB

tnergy Peak

17 28.7 40.1

W3..1O-800

____ _ __20.7 33.0

W3- 20- 300

27.7 38.1

W3-20-800

-4 ~ '~ * ~ JV ~*~%~D%- ~2S.2 35.3

W3-s0-300

8.84 19.6

f
W3- so- 800

5.16 14,5

W3- 100- 300

------ 34. R

W3- 100-800

24.4 4'2.

b'7"

'L



W4-10-So0  S/N - dB
Energy Peak

24.6 33.0

W4-10-8 0 0

"17.9 27.2

W4-2o-300

V 23.9 37.0

W4-20-8 00

~/ ~ 4 23. 3,6.

W4-50-300

2915.7 2S.3

14-SO-800

W4- 100-300

*4-1oo-so "

! is.



SIN..dB

33 Energy Peak
20.6 32.1

N5- 10-800

3"20.3 31.5

WS- 20- 300

22.0 31.9

W$.-20- 800)

#ws-so- 300

w.,- Boo

a- 3 
,o



W6-10-300 S/N- dB

Energy Peak

"* A 'V • -•.-,-.• 11.1 22.5

W6-10-800

42 12.8 25.6

W6-20-3oo

tA.- 43 .14. 0 23.9

• .W6-20•8 0 0

' 4- 14. a 27,8

W6-50-300

-•---~~4 -- • •- ---.- ,f O S, 26. 0

"W6-50-800

'46 ,.•S.s 27.6

W6-100 - 30 0

- - 4. OS , 2

W6- 100-800

M LOA 22.1
SO<



S/N dii

W1I-100-300 Energy Pe ak

12.5 25.3

US-SO- 300
a .84 19.6

W3 -50-800

Vf6- SO- 300
10.5 26.0

W4- 100- 300

%6-100-8bvs r.0

I']' j'.1



SIN -dB

~ ~..Energy Peak"�-4 4 2 1 . 3 2 8 . 7

1 kW- .lu-800

14.4 27.9

N46-20-300

4 M c NC . 7.19 19.2

146-20-800

6 19.3 28.8

1N6-20-300

S.3S .i S 1 8 .9

M6- 100- 300

S.29 14.9

Mi6-100-800

0.45 11.1



APPENDIX 8

Shot Spectra

Label Example:

0300

\ 300 ft shot depth

WHOI mieRange
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